
side4linux

MACHINE CONTROLLER OPERATING MANUAL

© COPYRIGHT D. BURKE 1/6/1992-2007

INTRODUCTION

Brief description of this manual.

This manual describes a new beginning for us. As a metals manufacturing company we have need for a
more integrated manufacturing environment embodying the benefits of a modern computer operating
system along with the adoption of an Open Source methodology.

By using Open Source software we are able to develop new programs that we are in need of using modern
tools such as the GCC 'C' compiler in the friendly graphical environment of GNOME. This will not be a one
way street as we are donating back to the Open Source Community several programs of our own that have
already seen many years of development, check out the 'side4linux' Project on www.sourceforge.net as a
starter. We are also adopting other Open Source programs such as the AVRA assembler and will contribute
to their continual improvement.

Our machines now have a new Machine Controller installed based on an Atmel AVR micro controller chip.
The Machine Controller is a design of our own making produced entirely in-house. This Manual will now set
about describing its function, but first a little history.

The programs that we have been developing since 1992 called "BCAM" and "RUNMILL" for Numerically
Controlled (NC) metals manufacture are now being converted over to 'side4linux', our new Integrated
Development Environment. This new IDE is being developed to provide us with a complete Computer
Integrated Manufacture system (CIM) on Linux. The program "BCAM" originally took an ASCII text file
written in a subset of ANCA type G-Code code and translated it into the code understood by various OEM
machine controllers. Then "RUNMILL" which was a real time program was employed to actually run the
machinery from a controlling computer via a serial link. The programs "BCAM" and "RUNMILL" continue
on as part of the side4linux Project although somewhat split up and renamed. They have been converted
from Turbo Pascal/Delphi on Dos/Windows to 'C' and GNOME/GTK+ on Linux. This took quite a while and
was only possible due to the availability of 'Gedit' a very good text editor, the 'p2c' conversion program, and
the extensive Help Documentation available for GTK/GNOME/Linux, all of which are Open Source. This
manual is being written using Open Office 2, also Open Source.

You will notice as you read on that many programs start with the letter 'B'. This is an historical connection
to our first NC machine a Bridgeport 2 vertical axis milling machine and has no connection either with the
Bridgeport Company or the side4linux Copyright holder. This convention continues on simply for historical
reasons so that we know the origins and purpose of that part of our extensive code base.

This manual is, and will continue to be, a work in progress. This is a deliberate and calculated action that is
part of our policy of continual improvement. At some stage the circuit diagrams will become developed
enough to be included and so this manual will take on a maintenance role as well as being the
operator/programmer manual.

I guess the good part for you the reader is that everything to make your own machine controller will be in
the side4linux project. There will be nothing to stop you building your own, either a direct copy, or
incorporating your own ideas as well. This work is released under the GPL, you may obtain a copy of the
license as follows,

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

David Burke, Adelaide Aeromotive Pty. Ltd, Adelaide, South Australia, 2007.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 1 of 16

Table of Contents
INTRODUCTION..1
1 Machine Controller Overview...2

1.1 Machine controller language summary..2
1.2 ANCA style G-code control emulation...3
1.3 Machine control intermediate commands...4
1.4 Machine controller instruction language..5
1.5 Machine controller monitor routines..5

2 Machine Controller Files and Programs...6
2.1 Step 1, Generate the G-code and Overlay code..7
2.2 Step 2, G-code to Intermediate code..8
2.3 Step-3, Intermediate code to Instruction code...8
2.4 Sending the Instruction Code to the machine...8

3 MC-1 Machine Controller Hardware Description..9
3.1 MC-1 Machine Controller Central Processing Unit ..9

3.1.1 MC-1 Auxiliary Input Port..10
3.1.2 MC-1 General Expansion Port..10
3.1.3 Programming the MC-1...10
3.1.4 MC-1 Serial Ports...11
3.1.5 Communicating with the MC-1 from a PC..12
3.1.6 Layout of the MC-1 CPU board...13
3.1.7 MC-1 CPU Auxiliary Port Pin-outs...14
3.1.8 MC-1 CPU Expansion Port Pin-outs..15

3.2 MC-1 Machine Controller Programmer Board...16

1 Machine Controller Overview
The machine will be controlled by an Atmel AVR based Machine Controller from a control computer
connected via a serial link using a three step process as described in Sections 1.2, 1.3 & 1.4 below. It
changes the automatic mode of operation in the Company from tape NC to computer CNC as is the modern
practice. The Machine Controller can also be accessed in debugging mode by the 'Bterm' program via the
same serial link from the controlling computer. The 'Debug' mode provides a low level interface to the
control code on-board the Machine Controller to probe or alter memory or register locations. The Debug
commands are described in Section 1.5 below. To carry on with the overview the actual files produced by
side4linux in each G-code Project will be discussed in Section 2.

1.1 Machine controller language summary
By using a three step process high level commands are translated firstly from high level G-code files into an
'Intermediate' set of files and then into a single machine type specific 'Instruction' file. This provides full
abstraction from the high level design down to the real world machining of a metal component. Further a
debuging program is provided on-board the Machine Controller for diagnostic purposes.

Commands recognised by the machine controller therefore fall into two groups,

 Machine Control. (Described by Sections 1.2, 1.3 and 1.4)
 Debug Monitor. (Described by Section 1.5)

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 2 of 16

1.2 ANCA style G-code control emulation
ANCA style G-code is a machine control code by which the sequence of machining operations on
a part may be controlled from a human understandable level. The side4linux G-code compiler 'Compileanca'
will emulate the G-code command set as follows (see the Help system of the IDE for a more detailed
description),

G CODES
G0 = Rapid traverse positioning eg G0 X125.5 Y27.0 Z50.0
G1 = Linear interpolation at the G94 feed rate.
G2 = Circular interpolation clockwise when looking down on a plane.
G3 = Circular interpolation anti-clockwise when looking down on a plane.

 e.g. (G2/G3)XnnYnnZnnInnJnn
G17 = Set to circular interpolation in the XY plane.
G18 = Set to circular interpolation in the XZ plane.
G19 = Set to circular interpolation in the YZ plane.
G40 = Cutter compensation cancel.
G41 = Cutter compensation left.
G42 = Cutter compensation right.
G57 = Start of subroutine (G57Rn)
G58 = End of subroutine (G58)
G59 = Call subroutine Rn, Cn times (G59R5C6)
G90 = Absolute dimensions.
G91 = Relative dimensions.
G94 = Feed in millimeters per minute. (G94nnn)

M CODES
M2 = End of program : indicates end of program and rewinds program to start.

OTHER
(= Comment follows, e.g. G0X7.6 (THIS IS TO BE IGNORED BY THE COMPILER

Essentially machining breaks down into two types of basic operations they are Linear interpolation
(machining in a straight line) and Circular interpolation (machining arcs which are parts of a circle).

Linear interpolation.

Say you want to machine from the origin ahead to a position of X = 10, Y = 5,

You can go flat out to get there with the G0 command e.g. G0X10Y5
or go at the pre-set machining rate with the G1 command e.g. G1X10Y5

Circular interpolation.

When programming circular interpolation it pays to remember these steps,

1. Determine arc direction (G2,G3)
2. Establish the co-ordinate points at the end of the circular motion. (X/Y values)
1. Calculate arc centre offset using the I,J,K letter codes as follows, (I/J values)

I Is the distance parallel to the x axis from the start position of the arc to the centre point of rotation.
J Is the distance parallel to the y axis from the starting position of the arc to the centre point of rotation.
K Is the distance parallel to the z axis from the starting position of the arc to the centre point of rotation.

For example a clockwise arc in the XY plane which has the following,

 Center = X0,Y0
 Start = X5,Y3 (will calculate to I/J values)
 End = X-2,Y-5 (will calculate to X/Y values)

Would be G2X2Y5I-5J-3 (Note Y = 5 points UP to the center and I = 5 points BACKWARD to the center.)
So if FORWARD is to the right hand when facing the XY plane , UP/FORWARD is positive and
BACKWARD/DOWN is negative.

(Or just use the side4linux IDE, Click on Tools>ANCA>G2 G3 Arc Calculator).

Distance can be relative or absolute depending on the G90/G91 code setting so beware of possible problems
which can arise. Note that G2 or G3 only cut at the machining rate as if it was a G1 command. There is no
equivalent G0 command!

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 3 of 16

1.3 Machine control intermediate commands
Machine control routines in G-code are read into the 'Compileanca' program where they are compiled into
'Intermediate' command files. The Intermediate command files are then processed by the 'B2raw' program
to create the Machine Controller 'Instruction' file. This single file can then be sent on to either of the
'Bmach' programs (Bmach2d or Bmach3d) for a visual check run or be sent by the 'Milldrive' program to a
Machine Controller via a serial link between the Mill Controller and the controlling computer. The
'Intermediate' commands recognised are,

VX Change X axis Vector register (relative co-ordinates)
VY Change Y axis Vector register (relative co- ordinates)
VZ Change Z axis Vector register (relative co-ordinates)
AX Change X axis Vector register (absolute co-ordinates)
AY Change Y axis Vector register (absolute co-ordinates)
AZ Change Z axis Vector register (absolute co-ordinates)
VL Load step Values into Move Axis Registers
VM Interpolated Move to Current Position of Vector Registers X,Y,Z
M00 Program END
M01 Set Feed Rate in 1/10 inches per minute. e.g. M01 22
M02 Rewind PROGRAM, Spindle OFF, Coolant OFF
M03 Display Message on front panel display
M04 Spindle ON
M05 Spindle OFF
M06 Program STOP, Spindle STOP, Coolant OFF (press Start to continue)
M07 Coolant ON
M08 Reserved.
M09 Coolant OFF
M20 Annul Axis REVERSALS
M21 Reverse X Axis
M22 Reverse Y Axis
M23 Reverse Z Axis
M50 Drill Cycle OFF, Quill UP
M51 Cycle Drill
M52 AUX. Function 'A' ON
M53 AUX. Function 'A' OFF
M54 Advance turret stop one position
M56 AUX. Function 'B' PULSE
M57 CYCLE/MILL,QUILL DOWN
M58 Quill Up
M59 Quill Down
M90 Set Scale for one Axis
M91 Assign Variable a Value
M92 Accept calculation block VAR3 = VAR1 +%*/ VAR2
M93 Rotate Axis
M94 Set new origin
M95 Reset to original origin
M98 Reply to sender with the Interpolator Flag Register
M99 Reply to sender with the Axis Absolute count for Z/Y/X/R/W

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 4 of 16

1.4 Machine controller instruction language

Machine control routines are accessed by the 'drive' series of programs (milldrive, lathedrive,robodrive
etc.) via the serial link between the Mill Controller and the controlling computer or by one of the
'Bmach' programs for visual checking purposes. The Machine Controller 'Instruction' commands
recognised are

N Next steps forshadowed e.g. 'N Xd Yd Zd Rd Wd 345 267 89 0 0' (direction d = P or N)
T Tool change command. e.g. 'T#1 3.0 0'
F Feedrate change command, e.g. 'F 50'
X X axis positive step. e.g. 'X'
x X axis negative step e.g. 'x'
Y Y axis positive step e.g. 'Y'
y Y axis negative step e.g. 'y'
Z Z axis positive step e.g. 'Z'
z Z axis negative step e.g. 'z'
R R axis positive step e.g. 'R'
r R axis negative step e.g. 'r'
W W axis positive step e.g. 'W'
w W axis negative step e.g. 'w'
Q Quit command e.g. 'Q'

1.5 Machine controller monitor routines
Machine Controller 'Monitor' routines used for debugging purposes are stored in the monitor jump table on
board the Machine Controller and are accessed from the controlling computer by setting the following front
panel switches as indicated,

MODE SELECT SWITCH TO --------> MANUAL
DATA SELECT SWITCH TO ----------> C
PRESSING -----------------------------------> START

To communicate with the MONITOR you must have connected the serial cable between the computer and
the Machine Controller and called up the 'Bterm' program from the side4linux IDE.

Upon pressing the start button the following (or similar) will appear on the controlling computer screen,

 'MCV6.1 © D.BURKE 2006'

 The following commands are then available,

 QDnnnn Display next sixteen bytes of program memory.
 QFxxxxyyyyzz Fill data RAM memory from xxxx to yyyy with data zz.

 NOTE

 1/ All characters and hex letters are to be in upper case only.
 2/ All numbers are in hex ascii.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 5 of 16

2 Machine Controller Files and Programs
Introduction

Compiling from the high level G-code down to machine step commands is a three step process as described
in Section 1. Here we look further at the files produced during this process and the programs that create
them but firstly a look at the overall process using a metal working lathe as an example.

General flow of G-Code through the Machine Controller to the Axis Drives of a two Axis lathe.

The side4linux IDE takes text files (in UTF8 character format) written in a subset of G-code and compiles it
to the 'Intermediate' M-code outlined on the previous pages. The 'Intermediate' files are further processed
by the B2raw program to produce the raw step command 'Instruction' file understood by the new Machine
Controller and also by visual emulator programs such as Bmach2d and Bmach3d. It should be pointed out
here that the G-code is normally written using metric dimensions but the raw code is converted to imperial
since most of the machine ball screws we have are imperial. This conversion is transparent to the user as it
is set by a Project variable that once set need not be changed for the target machine.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 6 of 16

Lathedrive
Compose
G-Code

Compile
into

Instruction
File

Auxiliary
Port

MC-1 CPU

General
Expansion

Port

Operator
Panel

Axis
Z

Axis
X

Spindle
Drive

'Drive' Program

Central
Processing Unit

2.1 Step 1, Generate the G-code and Overlay code
Using the side4linux text editor or one of the Tools provided (such as the PCBS Gerber 'Isolation' Tool) write
the text for the G-Code program and include any subroutines. Using the text editor or one of the 'Design'
programs provided (such as 'Bdesign3d') write up the Overlay file. Once the G-Code file is ready and
current in the text editor click on the 'Build' button to compile the code. You may then simulate the raw
code using a simulator provided (such as Bmach2d). The structure for a typical G-Code file is shown below,

(G-code file for 'isolation' cutting of a PCB's tracks.
G90 (absolute positioning from bottom left hand corner
G94 (use units per minute movements
G70 (we are using inch measurements!
F2.0 (initial feedrate at 2 inches per minute, alter to suit!
(========================= SUBROUTINES ========================
G57R1 (drill hole subroutine
G0Z-0.01 (race down to surface
G1Z0.08 (drill hole at feed rate
G0Z-0.02 (clear surface
G58 (end hole drilling subroutine
(
G57R2 (lower isolation cutter subroutine
G0Z-0.001 (race down to surface
G1Z0.008 (cut to bottom of isolation trench at feed rate
G58 (end lower isolation cutter subroutine
(============================ MAIN ============================
(Start of program ...
(Start of Drill all holes
T#2 0.02 0 (select 20 mil diameter twist drill for holes
(
G0X0.290000Y0.230000 (go to start of hole
G59R1C1 (drill a hole here
(
T#1 0.008 0 (replace the hole drill with the isolation Tool
(begin track isolation cutting
(
G59R3C1 (raise isolation cutter
G0X0.274000Y0.097000 (race to start of track
G59R2C1 (lower isolation cutter
G1X0.275000Y0.096000 (isolation cut track
G1X0.276000Y0.096000 (isolation cut track
G1X0.308000Y0.096000 (isolation cut track
(End of isolation cutting so back to start condition!
(
G0Z-0.02 (clear the surface
G0X0Y0 (home spindle back to bottom left corner
G0Z0 (touch the surface
M2 (that is all!

From the file above we can see the CGODE instructions, one per line, the structure is,
• Preliminary comments preceded with '(' comment out rest of line instruction
• Setup instructions such as setting the feedrate, selecting the first tool a 20mil twist drill etc.
• The Subroutine section which contains routines for hole drilling and raising/lowering the isolation

engraving tool.
• The MAIN section of the program,

• where one hole is drilled,
• followed by a tool change to the isolation engraving tool,
• Isolation cutting of one track,
• returning to the start position,
• and finally the all important M2 end command.

You can open the Help Browser and check out the ANCA Coding Help to understand what each instruction
actually does.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 7 of 16

2.2 Step 2, G-code to Intermediate code

So the command files required are,

1. The 'ANC' G-code master control file,
2. Any subroutine 'ANC' files to be included and
3. The 'OVL' overlay file to act as a visual template.

When compiled the following files are produced in the 'src' directory of the Project,

.RUNMILL.1 Master control file

.SRUNMILL.1 First control subroutine segment

.SRUNMILL.999 Up to the last subroutine segment
NAME.OVL The visual overlay template.

2.3 Step-3, Intermediate code to Instruction code
When compiled the following files are produced in the 'src' directory of the Project,

.MILLCMDS.CMD

Take note of the 'dot' in front of some files, you need to set the Linux file browser Nautilus to,

View>Show Hidden Files

to be able to see them. They are hidden because they are not to be altered by the Operator, to do so could
create a dangerous incident as the machine may be damaged or the Operator could be put at risk.

2.4 Sending the Instruction Code to the machine
Having simulated the raw '.MILLCMDS.CMD' command file the user could then use one of the provided
'Drive' programs such as 'Lathedrive' to send the step commands to the MC-1 Machine Controller on the
target machine via a serial RS232C communication line. Notice that the commands are the individual step
commands for that particular machine. This command file is much too large to fit into the Machine
Controller all in one go so there is a dialogue set up between the MC-1 and the PC. A cue is established on
board the MC-1 and one thousand steps are sent. Note here that these steps are not sent in real time as
Linux is not made that way (there is 'Real Time Linux' but we are presuming just the standard version
here). The Machine Controller then activates the Axis Drives in real time incorporating acceleration and de-
acceleration ramping. At some point the step cue is smaller so more steps are then ordered from the PC
until all of the '.MILLCMDS.CMD' command file has been sent. If there is a fault during this dialogue an
emergency stop command is sent to the PC to warn the Operator of the fault condition.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 8 of 16

3 MC-1 Machine Controller Hardware Description

3.1 MC-1 Machine Controller Central Processing Unit
The 'heart' of the Machine Controller is the central processing unit MC-1 which comprises the Atmel AVR
microcomputer chip, power conditioning components, two serial ports, a twenty pin Auxiliary port and a
forty pin General Expansion port. To make a complete Machine Controller there will be the need to add the
Axis Controller Board and the Spindle Drive Board. To continue we will start with describing Ports available
on the MC-1.

Screen shot of the MC-1 board from the 'pcb' program.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 9 of 16

3.1.1 MC-1 Auxiliary Input Port
The 20 pin Auxiliary Port serves two purposes. It acts as the on-board programming connector to allow the
transfer of the control code to the AVR's Flash memory and doubles as an input/output port when in use as
a controller.

3.1.2 MC-1 General Expansion Port
The General Expansion Port is connected via a 40 pin IDC ribbon cable to the Axis Controller Board and
carries the commands necessary to control axis movement.

3.1.3 Programming the MC-1
A simple interface board is provided which when connected to the PC and Auxiliary Port provides two way
communication between the two. Refer to the Practical 'Demo-8' provided in the side4linux PCBS Help
section for detailed instructions on programming the MC-1. Graphical programming software 'dbavrprog' is
provided for programming the MC-1 from the side4linux IDE as an embedded 'tool'. Also you may download
and install 'avrdude' as the programming adapter emulates the 'dapa' ('Direct AVR Parallel Access
cable'). The programming adapter software is designed to use the first parallel printer port also known as
'LPT:1'.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 10 of 16

3.1.4 MC-1 Serial Ports
The MC-1 board provides two serial ports, serial0 and serial1 for communication between the controlling
Linux PC and the Machine being controlled. Note that the serial0 port which is a Data Communications
Equipment port (DCE) connects to the control PC and Serial1 which is a Data Terminal Equipment port
(DTE) connects to a Slave serial port.

DB9 Female Serial Port-0 (DCE) DB9 Male PC Serial Port (DTE)

Pins Name Function Name Function Direction

1 N/C Not Connected CD Carrier Detect In

2 TX-1 Transmitted Data RD Received Data In

3 RX-1 Received Data TD Transmitted Data Out

4 DTR-IN Data Terminal Ready In DTR Data Terminal Ready Out

5 GND Signal Ground GND Signal Ground <-->

6 DSR-OUT Data Set Ready Out DSR Data Set Ready In

7 N/C Not Connected RTS Request To Send Out

8 N/C Not Connected CTS Clear To Send In

9 N/C Not Connected RI Ring Indicator In

DB9 Male Serial Port-1 (DTE) DB9 Female External Slave Port (DCE)

Pins Name Function Name Function Direction

1 N/C Not Connected N/C Not Connected

2 RX-2 Received Data TD Transmitted Data Out

3 TX-2 Transmitted Data RD Received Data In

4 DTR-OUT Data Terminal Ready OUT DTR-IN Data Terminal Ready In In

5 GND Signal Ground GND Signal Ground <-->

6 DSR-IN Data Set Ready In DSR-OUT Data Set Ready Out Out

7 N/C Not Connected N/C Not Connected

8 N/C Not Connected N/C Not Connected

9 N/C Not Connected N/C Not Connected

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 11 of 16

3.1.5 Communicating with the MC-1 from a PC
A 'monitor' program is provided in the side4linux package to allow for diagnostic operations on the MC-1 so
refer to the Practicals provided in the side4linux Help.

The controlling computer is an x86 PC running the Linux Operating System with two serial ports which we
will call 'COM1' and 'COM2'. Both of the PC's serial ports are configured as DTE which means on a modern
PC that they are male DB9 (9 pin) sockets. The Machine Controller has also got two serial ports which we
will call 'serial0' and 'serial1'. 'serial0' is configured as DCE and 'serial1' as DTE. Points to be considered
are,

• The ports on the Machine Controller will need to be a female DB9 outlet socket (DCE) for serial0
and a male DB9 outlet socket (DTE) for serial1.

• Communication between the two devices will be at a rate of 9600 Baud, one start bit and two stop
bits with no Parity checking using 7 bit ASCII code.

• IDC (Insulation Displacement Connection) cables need to be made which will connect the 10 pin
male headers on the Machine Controller to the DB9 outlet sockets.

• A communication cable (available commercially as a serial modem cable) will be needed to connect
the Machine Controller DCE port 'serial0' to one of the DTE ports on the PC (usually COM2).

• Software will be required on the PC to take the raw 'Instruction Code' or 'Monitor' commands
generated and transfer them to/from the Machine Controller (provided in the side4linux package).

• There needs to be a 'Monitor' program on board the Machine Controller to respond to 'Machine
Instructions' or 'Monitor Commands' sent from the PC (provided in the side4linux package).

• There needs to be diagnostic routines on board the Machine Controller to read/alter register and
memory locations (provided in the side4linux package).

• There needs to be a handshake line from the Machine Controller to the controlling Linux PC to
indicate that the Machine Controller is ready to receive data or commands.

• There needs to be a DTE port available on the Machine Controller ('serial1') to communicate with
either a machine to be controlled or another PC for operational and diagnostic purposes.

• There needs to be a handshake line from either a machine to be controlled or another PC for
operational and diagnostic purposes to the Machine Controller to indicate to the Machine Controller
when the machine or other PC is ready to receive instructions.

The ten pin male headers of the Machine Controller's two serial ports ('serial0' and 'serial1') are connected
to their male and female sockets respectively via Insulation Displacement Ribbon Cables. Note that pin-1 is
redundant and may be removed and pressed into the ribbon cable connector to provide for connector
polarisation. Connect with the recommended flat ribbon IDC cable according to the following pin out table,

10 Pin Headers viewed from top IDC DB9 Socket pin out

Pin Number SERIAL0 (DCE) SERIAL1 (DTE) Pin Number RS232C Signal Name

1 n/c n/c 1 no connect

2 TX1 RX2 2 TD/RD

3 RX1 TX2 3 RD/TD

4 DTR-IN DTR-OUT 4 DTR

5 GND GND 5 Signal Ground

6 n/u n/u not used not used

7 n/c n/c 9 no connect

8 n/c n/c 8 no connect

9 n/c n/c 7 no connect

10 DSR-OUT DSR-IN 6 DSR

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 12 of 16

3.1.6 Layout of the MC-1 CPU board

Notice that Pin-1 on all headers is the square pin!

In the case of electrolytic capacitors positive is the square pin!

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 13 of 16

Auxiliary Connector (20 Pins)

General Expansion Connector (40 Pins)

Serial Port 1 Serial Port 0

16MHz Xtal

32.768 kHz Watch Xtal

Pin 1

3.1.7 MC-1 CPU Auxiliary Port Pin-outs
Note that pin-1 is redundant and may be removed and pressed into the ribbon cable connector to provide
for connector polarisation.

MC-1 Auxiliary Port Pin-outs

Pin Number Net Pin Number Net

1 -9V 11 PE7

2 Gnd 12 PE6

3 -9V 13 PE5

4 +9V 14 PE4

5 PB5 15 PE3

6 PB4 16 PE2

7 PE1 17 +5V

8 PE0 18 RESET

9 SCK 19 MOSI

10 PB0 20 MISO

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 14 of 16

3.1.8 MC-1 CPU Expansion Port Pin-outs
Expansion Port connection is made through a 40 pin IDC ribbon cable (available commercially as an IDE
hard disk drive 40 pin PATA cable) to the Axis Control Board. Note that pin-1 is redundant and may be
removed and pressed into the ribbon cable connector to provide for connector polarisation.

MC-1 Expansion Port Pin-outs

Pin Number Net Pin Number Net

1 GND 21 PA6

2 GND 22 PA5

3 PD0 23 PA4

4 GND 24 PA3

5 PD7 25 PA2

6 PD1 26 PA1

7 +5V 27 PA0

8 PD6 28 GND

9 PG1 29 PF7

10 PG0 30 PF6

11 PC0 31 PF5

12 PC1 32 PF4

13 PC2 33 PE3

14 PC3 34 PE2

15 PC4 35 PE1

16 PC5 36 PE0

17 PC6 37 +5V

18 PC7 38 +5V

19 PG2 39 GND

20 PA7 40 GND

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 15 of 16

3.2 MC-1 Machine Controller Programmer Board
The MC-1 Programmer board is basically just a parallel printer cable that has had the printer plug cut off
and then wired into an interface printed circuit board that provides cleaned up signals. These programming
signals are presented to the MC-1 CPU board via a short ribbon cable connected to the Auxiliary Port. The
basic layout of the programmer board is shown below followed by a photo which shows it connected to a
MC-1 CPU.

MC-1 Programmer Board Layout

MC-1 Programmer Board Connected to the MC-1 CPU Board with power supply.

MC1 Machine Controller OPERATING MANUAL V1.6.1 © Copyright 19922007 D. BURKE Page 16 of 16

	INTRODUCTION
	1 Machine Controller Overview
	1.1 Machine controller language summary
	1.2 ANCA style G-code control emulation
	1.3 Machine control intermediate commands
	1.4 Machine controller instruction language
	1.5 Machine controller monitor routines

	2 Machine Controller Files and Programs
	2.1 Step 1, Generate the G-code and Overlay code
	2.2 Step 2, G-code to Intermediate code
	2.3 Step-3, Intermediate code to Instruction code
	2.4 Sending the Instruction Code to the machine

	3 MC-1 Machine Controller Hardware Description
	3.1 MC-1 Machine Controller Central Processing Unit
	3.1.1 MC-1 Auxiliary Input Port
	3.1.2 MC-1 General Expansion Port
	3.1.3 Programming the MC-1
	3.1.4 MC-1 Serial Ports
	3.1.5 Communicating with the MC-1 from a PC
	3.1.6 Layout of the MC-1 CPU board
	3.1.7 MC-1 CPU Auxiliary Port Pin-outs
	3.1.8 MC-1 CPU Expansion Port Pin-outs

	3.2 MC-1 Machine Controller Programmer Board

